- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Nesterenko, Brandon (2)
-
Yi, Qing (2)
-
Liao, Chunhua (1)
-
Lin, Pei-Hung (1)
-
Liu, Xiao (1)
-
Runnels, Brandon (1)
-
Zhang, Jiange (1)
-
Zhao, Jishen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stencil computations are widely used in the scientific simulation domain, and their performance is critical to the overall efficiency of many large-scale numerical applications. Many optimization techniques, most of them varying strategies of tiling and parallelization, exist to systematically enhance the efficiency of stencil computations. However, the effective- ness of these optimizations vary significantly depending on the wide range of properties demonstrated by the different stencils. This paper studies several well-known optimization strategies for stencils and presents a new approach to effectively guide the composition of these optimizations, by modeling their interactions with four domain-level proper- ties of stencils: spatial dimensionality, temporal order, order of accuracy, and directional dependence. When using our prediction model to guide optimizations for five real-world stencil applications, we were able to identify optimization strategies that outperformed two highly optimized stencil libraries by an average of 2.4x.more » « less
-
Nesterenko, Brandon; Liu, Xiao; Yi, Qing; Zhao, Jishen; Zhang, Jiange (, International Symposium on Memory Systems)
An official website of the United States government
